
Witchly scaling case study
Case Study: Scaling Witchly.host to 10k
Users on Bare Metal
Project: Witchly.host (Game Hosting ISP)
Role: Founder & Lead Systems Engineer
Status: Bootstrapped | Profitable | 10,000+ Registered Users

🚀 Executive Summary
The Goal: Architect a high-performance game hosting infrastructure capable of
supporting 10,000+ users with sub-20ms latency.
The Constraint: Zero VC funding. Required extreme capital efficiency (<€150/mo
OpEx).
The Result: Built a distributed bare-metal system that handled 50Gbps+ DDoS
attacks and thousands of concurrent containers.

1. The "Lean" Tech Stack
Instead of using expensive managed cloud solutions (AWS/GCP), I designed a
heterogeneous bare-metal cluster to maximize raw compute power per dollar.

The Hardware (Data Plane)

Provider: Hetzner Bare Metal.

Specs per Node: Ryzen 5 3600 (6 Cores/12 Threads), 64GB DDR4 RAM, 1TB
NVMe SSD.

OS: Ubuntu 20.04 LTS (Kernel tuned for high-throughput I/O).

The Orchestration

Virtualization: Docker + Pterodactyl Panel.

Isolation: Implemented strict resource throttling (CPU pinning & RAM limits) to
prevent "Noisy Neighbor" issues common in shared hosting.

Witchly scaling case study 1

Customization: Deployed custom 'Eggactyl' configurations to support niche
game environments requested by clients.

The Automation

Custom Bot: Developed a Discord Bot (Python/Node.js) to handle the "Order-
to-Provision" pipeline.

Billing: Integrated Razorpay & PayPal APIs via Slash Commands for instant
server activation.

2. Architecture Diagram (Conceptual)
Frontend (User Facing): WordPress (VPS) → Cloudflare (CDN/WAF).

Control Plane: Pterodactyl Panel (Separate VPS) → Cloudflare Proxy.

Data Plane (Nodes): Direct Bare Metal → Raw UDP/TCP (Optimized for
Latency).

3. Engineering Spotlight: The DDoS Mitigation
The Incident:
During peak traffic, the infrastructure suffered a coordinated L7 DDoS attack
(Mass IP Requests & TCP Floods). The Control Panel API was overwhelmed,
causing crashes every 5 minutes.

The Solution:

Traffic Analysis: Identified the attack vector as a volumetric botnet targeting
the login API.

WAF Hardening: Deployed aggressive Cloudflare Page Rules to cache static
assets and force "Under Attack Mode" (JS Challenge) specifically for panel
authentication.

Geo-Fencing: Analyzed logs to pinpoint the botnet origin; blocked specific
malicious ASNs and high-risk countries at the edge.

Local Defense: Configured UFW & IP Tables on bare metal nodes to drop non-
whitelisted traffic, protecting unproxied game ports.

Outcome: System stability restored in <20 minutes with zero data loss.

Witchly scaling case study 2

4. Key Metrics (Proof of Work)
Scale: 10,000+ Registered Users.

Efficiency: Achieved ~€100/month total infrastructure cost. (Equivalent
compute on AWS EC2 estimated at $3,000+/mo).

Performance: Maintained low-latency connectivity for primary markets
(Germany/Finland) via strategic routing.

Contact
Tushar Systems Engineer & Backend Developer
📍 Bangalore, India

Email: tushar@tushar-a.dev

LinkedIn: https://www.linkedin.com/in/tushar-a-607371315/

Github: https://github.com/Witchly

Witchly scaling case study 3

https://www.linkedin.com/in/tushar-a-607371315/
https://github.com/Witchly

